Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2024.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2024.03.20.585861

ABSTRACT

Bivalent COVID-19 vaccines comprising ancestral Wuhan-Hu-1 (WH1) and the Omicron BA.1 or BA.5 subvariant elicit enhanced serum antibody responses to emerging Omicron subvariants. We characterized the memory B-cell (Bmem) response following a fourth dose with a BA.1 or BA.5 bivalent vaccine, and compared the immunogenicity with a WH1 monovalent fourth dose. Healthcare workers previously immunized with mRNA or adenoviral vector monovalent vaccines were sampled before and one-month after a monovalent, BA.1 or BA.5 bivalent fourth dose COVID-19 vaccine. RBD-specific Bmem were quantified with an in-depth spectral flow cytometry panel including recombinant RBD proteins of the WH1, BA.1, BA.5, BQ.1.1, and XBB.1.5 variants. All recipients had slightly increased WH1 RBD-specific Bmem numbers. Recognition of Omicron subvariants was not enhanced following monovalent vaccination, while both bivalent vaccines significantly increased WH1 RBD-specific Bmem cross-recognition of all Omicron subvariants tested by flow cytometry. Thus, Omicron-based bivalent vaccines can improve recognition of descendent Omicron subvariants by pre-existing, WH1-specific Bmem, beyond that of a conventional, monovalent vaccine. This provides new insights into the capacity of variant-based mRNA booster vaccines to improve immune memory against emerging SARS-CoV-2 variants.


Subject(s)
COVID-19
2.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.09.15.557929

ABSTRACT

Background: Booster vaccinations are recommended to improve protection against severe disease from SARS-CoV-2 infection. With primary vaccinations involving various adenoviral vector and mRNA-based formulations, it remains unclear if these differentially affect the immune response to booster doses. We here examined the effects of homologous (mRNA/mRNA) and heterologous (adenoviral vector/mRNA) vaccination on antibody and memory B cell (Bmem) responses against ancestral and Omicron subvariants. Methods: Healthy adults who received primary BNT162b2 (mRNA) (n=18) or ChAdOx1 (vector) (n=25) vaccination were sampled 1-month and 6-months after their 2nd and 3rd dose (homologous or heterologous) vaccination. Recombinant spike receptor-binding domain (RBD) proteins from ancestral, Omicron BA.2 and BA.5 variants were produced for ELISA-based serology, and tetramerized for immunophenotyping of RBD-specific Bmem. Results: Dose 3 boosters significantly increased ancestral RBD-specific plasma IgG and Bmem in both cohorts. Up to 80% of ancestral RBD-specific Bmem expressed IgG1+. IgG4+ Bmem were detectable after primary mRNA vaccination, and expanded significantly to 5-20% after dose 3, whereas heterologous boosting did not elicit IgG4+ Bmem. Recognition of Omicron BA.2 and BA.5 by ancestral RBD-specific plasma IgG increased from 20% to 60% after the 3rd dose in both cohorts. Reactivity of ancestral RBD-specific Bmem to Omicron BA.2 and BA.5 increased following a homologous booster from 40% to 60%, but not after a heterologous booster. Conclusion: A 3rd mRNA dose generates similarly robust serological and Bmem responses in homologous and heterologous vaccination groups. The expansion of IgG4+ Bmem after mRNA priming might result from the unique vaccine formulation or dosing schedule affecting the Bmem response duration and antibody maturation.


Subject(s)
COVID-19
3.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.03.28.23287848

ABSTRACT

Understanding mucosal antibody responses from SARS-CoV-2 infection and/or vaccination is crucial to develop strategies for longer term immunity, especially against emerging viral variants. We profiled serial paired mucosal and plasma antibodies from: COVID-19 vaccinated only vaccinees (vaccinated, uninfected), COVID-19 recovered vaccinees (convalescent, vaccinated) and individuals with breakthrough Delta or Omicron BA.2 infections (vaccinated, infected). Saliva from COVID-19 recovered vaccinees displayed improved antibody neutralizing activity, Fc{gamma}R engagement and IgA compared to COVID-19 uninfected vaccinees. Furthermore, repeated mRNA vaccination boosted SARS-CoV-2-specific IgG2 and IgG4 responses in both mucosa biofluids (saliva and tears) and plasma. IgG, but not IgA, responses to breakthrough COVID-19 variants were dampened and narrowed by increased pre-existing vaccine-induced immunity to the ancestral strain. Salivary antibodies delayed initiation of boosting following breakthrough COVID-19 infection, especially Omicron BA.2, however, rose rapidly thereafter. Our data highlight how pre-existing immunity shapes mucosal SARS-CoV-2-specific antibody responses and has implications for long-term protection from COVID-19.


Subject(s)
COVID-19
4.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.02.28.530547

ABSTRACT

Following the COVID-19 pandemic caused by SARS-CoV-2, novel vaccines have successfully reduced severe disease and death. Despite eliciting lower antibody responses, adenoviral vector vaccines are nearly as effective as mRNA vaccines. Therefore, protection against severe disease may be mediated by immune memory cells. We here evaluated plasma antibody and memory B cells (Bmem) targeting the Spike receptor binding domain (RBD) elicited by the adenoviral vector vaccine ChAdOx1 (AstraZeneca), their capacity to bind Omicron subvariants, and compared this to the response elicited by the mRNA vaccine BNT162b2 (Pfizer-BioNTech). Whole blood was sampled from 31 healthy adults pre-vaccination, and four weeks after dose one and dose two of ChAdOx1. Neutralizing antibodies (NAb) against SARS-CoV-2 were quantified at each timepoint. Recombinant RBDs of the Wuhan-Hu-1 (WH1), Delta, BA.2, and BA.5 variants were produced for ELISA-based quantification of plasma IgG and incorporated separately into fluorescent tetramers for flow cytometric identification of RBD-specific Bmem. NAb and RBD-specific IgG levels were over eight times lower following ChAdOx1 vaccination than BNT162b2. In ChAdOx1-vaccinated individuals, median plasma IgG recognition of BA.2 and BA.5 as a proportion of WH1-specific IgG was 26% and 17%, respectively. All donors generated resting RBD-specific Bmem, which were boosted after the second dose of ChAdOx1, and were similar in number to those produced by BNT162b2. The second dose of ChAdOx1 boosted Bmem that recognized VoC, and 37% and 39% of WH1-specific Bmem recognized BA.2 and BA.5, respectively. These data uncover mechanisms by which ChAdOx1 elicits immune memory to confer effective protection against severe COVID-19.


Subject(s)
COVID-19 , Death
5.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.08.03.502703

ABSTRACT

Background: SARS-CoV-2 vaccination with BNT162b2 (Pfizer BioNTech) has been shown to be 95% effective. Double-dose vaccination generates high levels of spike-specific antibodies, memory B cells (Bmem) and T cells. However, variants of concern (VoC) with mutations in the spike Receptor Binding Domain (RBD) can evade antibody responses. Booster vaccinations improve antibody recognition of VoC, but it is unclear if this is due to higher total antibodies or their capacity to bind VoC. We here addressed the capacity of surface Ig on single Wuhan-specific Bmem after first and second dose BNT162b2 vaccination to recognize variant RBD. Methods: Samples were collected from 30 healthy COVID-19 naive individuals pre-BNT162b2 vaccination, 3 weeks post-dose 1 and 4-weeks post-dose 2. Plasma antibodies and Bmem were evaluated using recombinant RBD proteins of the Wuhan, Gamma and Delta strains. Results: All individuals generated a robust antibody response to BNT162b2 vaccination with all participants producing neutralizing antibodies following dose 2. IgM+ and IgG+ RBD-specific Bmem were generated after one vaccine dose, and those expressing IgG1 increased in absolute number after dose 2. The majority of RBD-specific Bmem bound the Gamma and/or Delta variants, and this proportion significantly increased after the second dose. Conclusion: The second dose of BNT162b2 increases the number of circulating Ig-class switched RBD-specific Bmem. Importantly, the second dose of vaccination is required for a high frequency of RBD-specific Bmem to recognize Gamma and Delta variants. This suggests that dose 2 not only increases the number of RBD-specific Bmem but also the affinity of the Bmem to overcome the point mutations in VoC.


Subject(s)
COVID-19
6.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.07.07.22277364

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants remains a formidable challenge to worldwide public health. The receptor binding domain (RBD) of the SARS-CoV-2 spike protein is a hotspot for mutations, reflecting its critical role at the ACE2 interface during viral entry. We comprehensively investigated the impact of RBD mutations, including 6 variants of concern (VOC) or interest (Alpha, Beta, Gamma, Delta, Kappa and Omicron) and 33 common point mutations, on IgG recognition, Fc{gamma}R-engagement, and ACE2-binding inhibition in plasma from BNT162b2-vaccine recipients (two-weeks following second dose) and mild-to-moderate COVID-19 convalescent subjects using our custom bead-based 39-plex array. We observed that IgG-recognition and Fc{gamma}R-binding antibodies were most profoundly decreased against Beta and Omicron RBDs, as well as point mutations G446S, found in Omicron, and N501T, a key mutation found in animal adapted SARS-CoV-2 viruses. Measurement of RBD-ACE2 binding affinity via Biolayer Interferometry showed all VOC RBDs have enhanced affinity to human ACE2. Furthermore we demonstrate that human ACE2 polymorphisms, E35K (rs1348114695), K26R (rs4646116) and S19P (rs73635825), have altered binding kinetics to the RBD of VOCs potentially affecting virus-host interaction and thereby host susceptibility.


Subject(s)
Coronavirus Infections , COVID-19
7.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.11.17.20233544

ABSTRACT

BackgroundLasting immunity to SARS-CoV-2 following infection is questioned because serum antibodies decline in convalescence. However, functional immunity is mediated by long-lived memory T and B (Bmem) cells. ObjectiveTo determine the longevity and immunophenotype of SARS-CoV-2-specific Bmem cells in COVID-19 patients. MethodsRecombinant spike receptor binding domain (RBD) and nucleocapsid protein (NCP) were produced for ELISA-based serology, and biotinylated for fluorescent tetramer generation to identify SARS-CoV-2-specific Bmem cells by flow cytometry with a panel of 13 mAbs. 36 blood samples were obtained from 25 COVID-19 patients (11 paired) between 4-242 days post-symptom onset for detection of neutralizing antibodies, IgG serology and flow cytometry. ResultsThe recombinant RBD and NCP were specifically recognized by serum IgG in all patients and reactivity declined >20 days post-symptom onset. All patients had detectable RBD- and NCP-specific Bmem cells at 8.23-267.6 cells/ml of blood (0.004-0.13% of B cells) regardless of sampling time. RBD- and NCP-specific Bmem cells predominantly expressed IgM or IgG1, with the latter formed slightly later than the former. RBD-specific IgG+ Bmem were predominantly CD27+, and numbers significantly correlated with circulating follicular helper T cell numbers. ConclusionRBD- and NCP-specific Bmem cells persisted for 8 months, indicating that the decline in serum antibodies after 1 month does not indicate waning of immunity but a contraction of the immune response. Flowcytometric detection of SARS-CoV-2-specific Bmem cells enables detection of long-term functional immunity following infection or vaccination for COVID-19.


Subject(s)
COVID-19
8.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.10.06.20207514

ABSTRACT

COVID-19 causes persistent endothelial inflammation, lung and cardiovascular complications. SARS-CoV-2 utilises the catalytic site of full-length membrane-bound angiotensin converting enzyme 2 (ACE2) for cell entry causing downregulation of tissue ACE2. We reported downregulation of cardiac ACE2 is associated with increased plasma ACE2 activity. In this prospective observational study in recovered COVID-19 patients, we hypothesised that SARS-CoV-2 infection would be associated with shedding of ACE2 from cell membranes and increased plasma ACE2 activity. MethodsWe measured plasma ACE2 catalytic activity using a validated, sensitive quenched fluorescent substrate-based assay in a cohort of Australians aged [≥]18 years (n=66) who had recovered from mild, moderate or severe SARS-CoV-2 infection (positive result by PCR testing) and age and gender matched uninfected controls (n=70). Serial samples were available in 23 recovered SARS-CoV-2 patients. ResultsPlasma ACE2 activity at a median of 35 days post-infection [interquartile range 30-38 days] was 97-fold higher in recovered SARS-CoV-2 patients compared to controls (5.8 [2-11.3] vs. 0.06 [0.02-2.2] pmol/min/ml, p<0.0001). There was a significant difference in plasma ACE2 activity according to disease severity (p=0.033), with severe COVID-19 associated with higher ACE2 activity compared to mild disease (p=0.027). Men (n=39) who were SARS-CoV-2 positive had higher median plasma ACE2 levels compared to women (n=27) (p<0.0001). We next analysed whether an elevated plasma ACE2 activity level persisted following SARS-CoV-2 infection in subjects with blood samples at 63 [56-65] and 114 [111-125] days post infection. Plasma ACE2 activity remained persistently elevated in almost all subjects, with no significant differences between timepoints in post-hoc comparisons (p>0.05). DiscussionThis is the first description that plasma ACE2 activity is elevated after COVID-19 infection, and the first with longitudinal data indicating plasma ACE2 activity remains elevated out to a median of 114 days post-infection. Larger studies are now needed to determine if persistent elevated plasma ACE2 activity identifies people at risk of prolonged illness following COVID-19.


Subject(s)
COVID-19
9.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.05.11.20098459

ABSTRACT

SARS-CoV-2, the pandemic coronavirus that causes COVID-19, has infected millions worldwide, causing unparalleled social and economic disruptions. COVID-19 results in higher pathogenicity and mortality in the elderly compared to children. Examining baseline SARS-CoV-2 cross-reactive coronavirus immunological responses, induced by circulating human coronaviruses, is critical to understand such divergent clinical outcomes. The cross-reactivity of coronavirus antibody responses of healthy children (n=89), adults (n=98), elderly (n=57), and COVID-19 patients (n=19) were analysed by systems serology. While moderate levels of cross-reactive SARS-CoV-2 IgG, IgM, and IgA were detected in healthy individuals, we identified serological signatures associated with SARS-CoV-2 antigen-specific Fc{gamma} receptor binding, which accurately distinguished COVID-19 patients from healthy individuals and suggested that SARS-CoV-2 induces qualitative changes to antibody Fc upon infection, enhancing Fc{gamma} receptor engagement. Vastly different serological signatures were observed between healthy children and elderly, with markedly higher cross-reactive SARS-CoV-2 IgA and IgG observed in elderly, whereas children displayed elevated SARS-CoV-2 IgM, including receptor binding domain-specific IgM with higher avidity. These results suggest that less-experienced humoral immunity associated with higher IgM, as observed in children, may have the potential to induce more potent antibodies upon SARS-CoV-2 infection. These key insights will inform COVID-19 vaccination strategies, improved serological diagnostics and therapeutics.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL